Class of 1960 Scholars Program:

With funds generously provided by the Class of 1960, the BIMO Program invites prominent researchers from other institutions to campus to present a public seminar and then to meet privately in a discussion and dinner setting with a select group of students (chosen for the calendar year to be the BIMO Class of 1960 Scholars).

Upcoming Speakers


droppedImageProf. Dianne Newman, PhD
Professor of Geobiology
Investigator, Howard Hughes Medical Institute
California Institute of Technology
Date: September 26, 2014

Seminar Title: “Why changing color matters to Pseudomonas aeruginosa

One of the defining attributes of Pseudomonas aeruginosa is its striking blue-green color. The name “aeruginosa” derives from the Latin word for copper rust, which is of the same hue. While microbiologists and clinicians have long used color to identify the organism, why it is colored in the first place—and why its color changes with aeration— is a question that not many have considered. We now know that phenazines, a class of redox-active pigments, are responsible not only for the blue-green color of P. aeruginosa in the presence of oxygen, but also for different colors displayed by other Pseudomonas species. In the early 20th phenazines are “accessory respiratory pigments” that sustain bacterial “respiration” based on their ability to stimulate oxygen consumption. Their work was carried out before respiratory pathways were fully understood and well before the importance of microbial biofilms in nature and disease was widely recognized. In the interval between Friedheim’s pioneering studies and our recent work, attention shifted to exploring the roles of phenazines as virulence factors. Phenazines came to be known as “secondary metabolites”, molecules produced at late stages of microbial growth in laboratory cultures whose function was thought to be to protect Pseudomonas species from competitors.  While the antibiotic activity of phenazines has been elegantly shown in a variety of contexts, labeling phenazines as “secondary metabolites” suggests that they are not essential to the growth or survival of their producers. In this talk, I will present a body of work that champions Friedheim’s original hypothesis and goes beyond it. Specifically, I will discuss a variety of important physiological functions phenazines play for P. aeruginosa under anoxic conditions that transcend their antibiotic activity, including controlling carbon flux through central metabolic pathways, redox homeostasis, iron acquisition, survival in multicellular communities, and cell-cell signaling. I will close by discussing the implications of these findings for treating cystic fibrosis infections.

See her website for more details concerning Prof. Newman’s research.


bio-golubProf. Todd Golub, M.D.
Founding Core Member, Broad Institute
Director, Cancer Program, Broad Institute
Professor of Pediatrics, Harvard Medical School

Date: February 27, 2015

Seminar Title: TBA

The Golub laboratory is focused on discovering and understanding the genetic underpinnings of cancer. Investigators in the lab use a variety of approaches to reveal the molecular mechanisms underlying cancer, with the goal of contributing knowledge that will help transform the practice of cancer medicine.  See Dr. Golub’s  website for more details concerning his research.

The BIMO Class of 1960 Scholars for 2014

Sam Avila
Chris Bravo
Cecilia Castellano
John Chae
Christina Chen
Achala Chittor
Abby Dalzell
Michelle Higgins
Carolina Jaramillo
Elizabeth Jacobsen
Gloria Joo
Grace Kim
Brian Leland
Brian Levine
Alex Meyer
Zaw Htut Naing
Luxi Qiao
Shazeen Rattansi
Penny Sun
Helen Tang
Hector Trujillo
Jacob Verter